Capitol Patch \& Ramp 20kg

Ardex (Ardex Australia)

Version No: 2.1
Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements
SECTION 1 Identification of the substance / mixture and of the company / undertaking
Product Identifier

Product name	Capitol Patch \& Ramp 20kg
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Rapid drying repair mortar for internal use.

Details of the supplier of the safety data sheet

Registered company name	Ardex (Ardex Australia)
Address	20 Powers Road Seven Hills NSW 2147 Australia
Telephone	1800224070
Fax	1300780102
Website	www.ardexaustralia.com
Email	technicalservices@ardexaustralia.com
Emergency telephone number	
Association / Organisation	Ardex (Ardex Australia)
Emergency telephone	
numbers	1800224070 (Mon-Fri, 9am-5pm)
Other emergency telephone	
numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

| HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

ChemWatch Hazard Ratings			
	Min	Max	
Flammability	0		
Toxicity	0		$0=$ Minimum
Body Contact	3		1 = Low
Reactivity	1		2 = Moderate
Chronic	3		$4=$ Extreme

Poisons Schedule	Not Applicable
Classification [1]	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

[^0]| Hazard pictogram(s) |
| :--- |
| Signal word |
| Danger |

Hazard statement(s)

H315	Causes skin irritation.
H317	May cause an allergic skin reaction
H318	Causes serious eye damage.
H335	May cause respiratory irritation.

Precautionary statement(s) Prevention

P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
$\mathbf{P 2 6 1}$	Avoid breathing dust/fumes.
$\mathbf{P 2 6 4}$	Wash all exposed external body areas thoroughly after handling.
$\mathbf{P 2 7 2}$	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

$\mathbf{P 3 0 5 + P 3 5 1 + P 3 3 8}$	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
$\mathbf{P 3 1 0}$	Immediately call a POISON CENTER/doctor/physician/first aider.
$\mathbf{P 3 0 2 + P 3 5 2}$	IF ON SKIN: Wash with plenty of water and soap.
$\mathbf{P 3 3 3 + P 3 1 3}$	If skin irritation or rash occurs: Get medical advice/attention.
$\mathbf{P 3 6 2 + P 3 6 4}$	Take off contaminated clothing and wash it before reuse.
$\mathbf{P 3 0 4 + P 3 4 0}$	IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

P405 Store locked up.
P403+P233 Store in a well-ventilated place. Keep container tightly closed

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures		
CAS No	\%[weight]	Name
14808-60-7.	<60	graded sand
65997-16-2	<30	calcium aluminate cement
65997-15-1	<10	portland cement
1317-65-3	<10	calcium carbonate
7778-18-9	<30	calcium sulfate
Not Available	balance	Ingredients determined not to be hazardous
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008-Annex VI; 4. Classification drawn from C\&L; * EU IOELVs available	

SECTION 4 First aid measures

Eye Contact	If this product comes in contact with the eyes: - Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact	If skin or hair contact occurs: - Immediately flush body and clothes with large amounts of water, using safety shower if available. - Quickly remove all contaminated clothing, including footwear. - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. - Transport to hospital, or doctor.
Inhalation	- If fumes or combustion products are inhaled remove from contaminated area. - Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - Transport to hospital, or doctor, without delay.
Ingestion	- Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK. - At least 3 tablespoons in a glass of water should be given. - Although induction of vomiting may be recommended (IN CONSCIOUS PERSONS ONLY), such a first aid measure is dissuaded due to the risk of aspiration of stomach contents. (i) It is better to take the patient to a doctor who can decide on the necessity and method of emptying the stomach. (ii) Special circumstances may however exist; these include non-availability of charcoal and the ready availability of the doctor. NOTE: If vomiting is induced, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear protective gloves when inducing vomiting. - REFER FOR MEDICAL ATTENTION WITHOUT DELAY. - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. (ICSC20305/20307)

Indication of any immediate medical attention and special treatment needed
 Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

* There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility \quad Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting	- Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	- Non combustible. * Not considered a significant fire risk, however containers may burn. Decomposes on heating and produces acrid and toxic fumes of: carbon monoxide (CO) carbon dioxide (CO2) sulfur oxides (SOx) silicon dioxide (SiO 2) metal oxides other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes.
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures
 See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

- Clean up all spills immediately.

Avoid breathing dust and contact with skin and eyes.
-Wear protective clothing, gloves, safety glasses and dust respirator

- Use dry clean up procedures and avoid generating dust.

Minor Spills

- Sweep up, shovel up or

Vacuum up (consider explosion-proof machines designed to be grounded during storage and use)

- Place spilled material in clean, dry, sealable, labelled container.

Moderate hazard.

- CAUTION: Advise personnel in area.
* Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.

Recover product wherever possible.
IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
ALWAYS: Wash area down with large amounts of water and prevent runoff into drains

- If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

Other information

- Avoid all personal contact, including inhalation.

Wear protective clothing when risk of exposure occurs

- Use in a well-ventilated area

Prevent concentration in hollows and sumps

- DO NOT enter confined spaces until atmosphere has been checked.

DO NOT allow material to contact humans, exposed food or food utensils.
Avoid contact with incompatible materials.
When handling, DO NOT eat, drink or smoke.
Keep containers securely sealed when not in use
Avoid physical damage to containers.
Always wash hands with soap and water after handling.

- Work clothes should be laundered separately. Launder contaminated clothing before re-use.

Use good occupational work practice.
Observe manufacturer's storage and handling recommendations contained within this SDS.

* Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame
- Establish good housekeeping practices
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.

Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers $1 / 32 \mathrm{in} .(0.8 \mathrm{~mm})$ thick can be sufficient to warrant immediate cleaning of the area.
Do not use air hoses for cleaning
Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area Vacuums with explosion-proof motors should be used

- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
-The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.
Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

Store in original containers.
Keep containers securely sealed.
Store in a cool, dry area protected from environmental extremes.
Store away from incompatible materials and foodstuff containers.
Protect containers against physical damage and check regularly for leaks.

- Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

- Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams\}
Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container	Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag.
	NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer.
	* Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)
INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	graded sand	Silica - Crystalline: Quartz (respirable dust)	0.05 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	portland cement	Portland cement	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	calcium carbonate	Calcium carbonate	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	calcium sulfate	Calcium sulphate	10 $\mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.

Emergency Limits

| Ingredient | TEEL-1 | TEEL-2 | |
| :--- | :--- | :--- | :--- | :--- |
| graded sand | $0.075 \mathrm{mg} / \mathrm{m} 3$ | | |
| calcium carbonate | $45 \mathrm{mg} / \mathrm{m} 3$ | | |
| | Original IDLH | $200 \mathrm{mg} / \mathrm{m} 3$ | |
| Ingredient | $25 \mathrm{mg} / \mathrm{m} 3 / 50 \mathrm{mg} / \mathrm{m} 3$ | | |
| graded sand | Not Available | | Revised IDLH |
| calcium aluminate cement | $5,000 \mathrm{mg} / \mathrm{m} 3$ | | Not Available |
| portland cement | Not Available | | Not Available |
| calcium carbonate | Not Available | Not Available | |
| calcium sulfate | | | Not Available |

Occupational Exposure Banding

| Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit |
| :--- | :--- | :--- | :--- |
| calcium aluminate cement | E | $\leq 0.01 \mathrm{mg} / \mathrm{m}^{3}$ |
| Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the
 adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a
 range of exposure concentrations that are expected to protect worker health. | |

MATERIAL DATA

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:
Process controls which involve changing the way a job activity or process is done to reduce the risk.
Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
Employers may need to use multiple types of controls to prevent employee overexposure.
Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.
Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

| Type of Contaminant: | Air Speed: |
| :--- | :--- | :--- |
| solvent, vapours, degreasing etc., evaporating from tank (in still air). | $0.25-0.5 \mathrm{~m} / \mathrm{s}$
 $(50-100 \mathrm{f} / \mathrm{min})$. |
| aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray
 drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | $0.5-1 \mathrm{~m} / \mathrm{s}(100-200$
 $\mathrm{f} / \mathrm{min})$. |
| direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active
 generation into zone of rapid air motion) | $1-2.5 \mathrm{~m} / \mathrm{s}(200-500$
 $\mathrm{f} / \mathrm{min})$. |
| grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of
 very high rapid air motion). | $2.5-10 \mathrm{~m} / \mathrm{s}$
 $(500-2000 \mathrm{f} / \mathrm{min})$. |

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of $1-2 \mathrm{~m} / \mathrm{s}(200-400 \mathrm{f} / \mathrm{min})$ for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Eye and face protection

Skin protection

Hands/feet protection
As defined in ASTM F-739-96 in any application, gloves are rated as:
Excellent when breakthrough time $>480 \mathrm{~min}$
Good when breakthrough time > 20 min
Fair when breakthrough time < 20 min
Poor when glove material degrades
For general applications, gloves with a thickness typically greater than 0.35 mm , are recommended.
It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times
Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task
Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of

- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
- polychloroprene.
- nitrile rubber.
- butyl rubber.
fluorocaoutchouc.
+ polyvinyl chloride.
Gloves should be examined for wear and/ or degradation constantly.
See Other protection below
- Overalls.
- P.V.C apron.

Barrier cream
Skin cleansing cream.

* Eye wash unit.

Respiratory protection

Particulate. (AS/NZS 1716 \& 1715, EN 143:2000 \& 149:001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to $10 \times$ ES	P1 Air-line	PAPR-P1	
up to $50 \times$ ES	Air-line ${ }^{* *}$	-	-
up to $100 \times$ ES	-	-	PAPR-P2
		P2	-
$100+x$ ES	-	Air-line ${ }^{\star}$	-

* - Negative pressure demand ** - Continuous flow

A(All classes) $=$ Organic vapours, B AUS or $\mathrm{B} 1=$ Acid gasses, $\mathrm{B} 2=$ Acid gas or hydrogen cyanide $(\mathrm{HCN}), \mathrm{B} 3=$ Acid gas or hydrogen cyanide $(\mathrm{HCN}), \mathrm{E}=\mathrm{Sulfur}$ dioxide(SO2), $\mathrm{G}=$ Agricultural chemicals, $\mathrm{K}=$ Ammonia(NH 3), $\mathrm{Hg}=$ Mercury, $\mathrm{NO}=$ Oxides of nitrogen, $\mathrm{MB}=$ Methyl bromide, $\mathrm{AX}=$ Low boiling point organic compounds(below 65 degC)

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option)
Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
Use approved positive flow mask if significant quantities of dust becomes airborne.
Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Appearance	Dark grey powder; insoluble in water.		
Physical state	Divided Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n -octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (${ }^{\circ} \mathrm{C}$)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature (${ }^{\circ} \mathrm{C}$)	Not Available
Melting point / freezing point (${ }^{\circ} \mathrm{C}$)	Not Available	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (${ }^{\circ} \mathrm{C}$)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (${ }^{\circ} \mathrm{C}$)	Not Applicable	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (\%)	Not Applicable	Surface Tension (dyn/cm or mN / m)	Not Applicable
Lower Explosive Limit (\%)	Not Applicable	Volatile Component (\%vol)	Not Applicable
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available\%)	Not Applicable
Vapour density ($\mathrm{Air}=1$)	Not Applicable	VOC g/L	Not Applicable

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	- Unstable in the presence of incompatible materials. - Product is considered stable. - Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects
Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhaled
Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
Inhalation of dusts, generated by the material during the course of normal handling, may produce severe damage to the health of the individual. Relatively small amounts absorbed from the lungs may prove fatal.
Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.
The material may accentuate any pre-existing dermatitis condition
Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related.
Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts.
Open cuts, abraded or irritated skin should not be exposed to this material
Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.
Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.
Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.
Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.
Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems
Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos.
In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO 3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae (e.g., rhodonite)
In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low. Four grades of wollastonite of different fibre size were tested for carcinogenicity in one experiment in rats by intrapleural implantation. There was no information on the purity of the four samples used. A slight increase in the incidence of pleural sarcomas was observed with three grades, all of which contained fibres greater than 4 um in length and less than 0.5 um in diameter.
In two studies by intraperitoneal injection in rats using wollastonite with median fibre lengths of 8.1 um and 5.6 um respectively, no intraabdominal tumours were found.
Evidence from wollastonite miners suggests that occupational exposure can cause impaired respiratory function and pneumoconiosis. However animal studies have demonstrated that wollastonite fibres have low biopersistence and induce a transient inflammatory response compared to various forms of asbestos. A two-year inhalation study in rats at one dose showed no significant inflammation or fibrosis
Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis.
Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO]
Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust levels.
Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity.
Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.
Levels above $10 \mathrm{ug} / \mathrm{m} 3$ of suspended inorganic sulfates in the air may cause an excess risk of asthmatic attacks in susceptible persons High blood concentrations of calcium ion may give rise to vasodilation and depress cardiac function leading to hypotension and syncope. Calcium ions enhance the effects of digitalis on the heart and may precipitate digitalis intoxication. Calcium salts also reduce the absorption of tetracyclines
In neonates calcification of soft-tissue has been observed following therapeutic administration.
Some studies show that large quantities of calcium intake can cause hypercalcemia, which can in turn lead to renal failure Renal failure can occur within hours or days or, alternatively, settles gradually, evolving over several years until it reaches terminal stages. Similarly, acute renal failure can also develop into chronic forms of the disease.
Hypercalcaemia conditions can be associated with normal or reduced calcium serum levels, as the body tends to maintain a balanced
metabolism of the mineral, known as the compensation phase. When there is a slight increase in the concentration of ions in the blood, calcium excretion markedly increases, while intestinal absorption decreases After kidney damage has set in, a loss of calcium may occur, thereby decreasing the serum concentration.
Serum protein levels may decrease as a result of proteinuria in cases of renal complications. Proteinuria is an indicator of kidney disease and represents an independent risk factor for the progression of such a condition. Increased serum creatinine levels may represent an important parameter, given that kidney diseases are associated with increased serum creatinine levels. When renal pathology occurs, a progressive loss of glomerular filtration begins, resulting in increased plasma creatinine concentrations. During the course of kidney failure, discrete, but constant, increments in plasma creatinine levels occur.

Renal disease with albuminuria may also be the cause of hypoalbuminemia in patients with liver disease. In cases of established liver damage, increased calcium urinary excretion may occur. Therefore, a similar increase may cause the decline in serum calcium levels in the current study.

Capitol Patch \& Ramp 20kg	TOXICITY	IRRITATION
	Not Available	Not Available
graded sand	TOXICITY	IRRITATION
	Oral (Rat) LD50; $500 \mathrm{mg} / \mathrm{kg}^{[2]}$	Not Available
calcium aluminate cement	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ${ }^{[1]}$	Not Available
	Inhalation(Rat) LC50; $1.9 \mathrm{mg} / 4 \mathrm{~h}^{[1]}$	
	Oral (Rat) LD50; >2000 mg/kg ${ }^{[1]}$	
portland cement	TOXICITY	IRRITATION
	Not Available	Not Available
calcium carbonate	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ${ }^{[1]}$	Eye (rabbit): $0.75 \mathrm{mg} / 24 \mathrm{~h}$ - SEVERE
	Inhalation(Rat) LC50; >3 mg//4h ${ }^{[1]}$	Eye: no adverse effect observed (not irritating) ${ }^{[1]}$
	Oral (Rat) LD50; >2000 mg/kg ${ }^{[1]}$	Skin (rabbit): $500 \mathrm{mg} / 24 \mathrm{~h}$-moderate
		Skin: no adverse effect observed (not irritating) ${ }^{[1]}$
calcium sulfate	TOXICITY	IRRITATION
	Inhalation(Rat) LC50; >3.26 mg/4h ${ }^{[1]}$	Not Available
	Oral (Rat) LD50; >1581 mg/kg ${ }^{[1]}$	
Legend:	Value obtained from Europe ECHA R pecified data extracted from RTECS -	city 2.* Value obtained from manufacturer's SDS. Unless otherwise Substances

PORTLAND CEMENT

The following information refers to contact allergens as a group and may not be specific to this product.
Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.
No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects.
The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Gypsum (calcium sulfate dihydrate) is a skin, eye, mucous membrane, and respiratory system irritant. Early studies of gypsum miners did not relate pneumoconiosis with chronic exposure to gypsum. Other studies in humans (as well as animals) showed no lung fibrosis produced by natural dusts of calcium sulfate except in the presence of silica. However, a series of studies reported chronic nonspecific respiratory diseases in gypsum industry workers in Gacki, Poland.
Unlike other fibers, gypsum is very soluble in the body; its half-life in the lungs has been estimated as minutes. In four healthy men receiving calcium supplementation with calcium sulfate (CaSO4-1/2H2O) (200 or 220 mg) for 22 days, an average absorption of 28.3% was reported. Several feeding studies in pigs on the bioavailability of calcium in calcium supplements, including gypsum, have been conducted. The bioavailability of calcium in gypsum was similar to that for calcitic limestone, oyster shell flour, marble dust, and aragonite, ranging from 85 to 102%. In mice, the i.p. and intragastric LD50 values were 6200 and $4704 \mathrm{mg} / \mathrm{kg}$, respectively, for phosphogypsum ($98 \% \mathrm{CaSO4} \cdot \mathrm{H} 2 \mathrm{O}$). For Plaster of Paris, the values were 4415 and 5824, respectively. In
rats, an intragastric LD50 of $9934 \mathrm{mg} / \mathrm{kg}$ was reported for phosphogypsum
Repeat dose toxicity: In a study of 241 underground male workers employed in four gypsum mines in Nottinghamshire and Sussex for a year (November 1976-December 1977), results of chest X-rays, lung function tests, and respiratory systems suggested an association of the observed lung shadows with the higher quartz content in dust rather than to gypsum; the small round opacities in the lungs were characteristic of silica exposure.
CALCIUM SULFATE
Prophylactic examinations of workers in a gypsum extraction and production plant (dust concentration exceeded TLV 2.5- to 10-fold) reported no risk of pneumoconiosis due to gypsum exposure, while another study of gypsum manufacturing plant workers reported that chronic occupational exposure to gypsum dust had resulted in pulmonary ventilatory defect of the restrictive form.
Three cases of idiopathic interstitial pneumonia with multiple bullae throughout the lungs were seen in Japanese schoolteachers (lifetime occupation) exposed to chalk; $2 / 3$ of the chalk was made from gypsum and small amounts of silica and other minerals. In rats exposed to an aerosol of anhydrous calcium sulfate fibers ($15 \mathrm{mg} / \mathrm{m} 3$) or a combination of milled and fibrous calcium sulfate ($60 \mathrm{mg} / \mathrm{m} 3$) six hours per day, five days per week for three weeks, gypsum dust was quickly cleared from the lungs of via dissolution and mechanisms of particle clearance.
In guinea pigs given intraperitoneal (i.p.) injections of gypsum (doses not provided), gypsum was absorbed followed by the dissolution of gypsum in surrounding tissues. In another study, after i.p. injection of gypsum (2 cm 3 of a 5 or 10% suspension in saline) into guinea pigs, which were sacrificed at intervals up to 180 days, most of the dust was found distributed in the peritoneum of the anterior abdominal wall. Gypsum dust produced irregular and clustered nodules, which decreased in size over time.
Direct administration of WTC PM2.5 [mostly composed of calcium-based compounds, including calcium sulfate (gypsum) and calcium carbonate (calcite)] (10,32 , or $100 \mu \mathrm{~g}$) into the airways of mice produced mild to moderate lung inflammation and airway hyperresponsiveness at the high dose. [lt was noted that WTC PM2.5 is composed of many chemical species and that their interactions may be related with development of airway hyperresponsiveness.] In female SPF Wistar rats intratracheally (i.t.) instilled with anhydrite dust (35 mg) and sacrificed three months

In inhalation (nose-only) experiments in which male F344 rats were exposed to calcium sulfate fiber aerosols ($100 \mathrm{mg} / \mathrm{m} 3$) for six hours per day, five days per week for three weeks, there were no effects on the number of macrophages per alveolus, bronchoalveolar lavage fluid (BALF) protein concentration, or BALF g-glutamyl transpeptidase activity ($\mathrm{g}-\mathrm{GT}$). Following three weeks of recovery, nonprotein thiol levels (NPSH), mainly glutathione, were increased in animals. In follow-up experiments, rats were exposed to an aerosol of anhydrous calcium sulfate fibers (15 $\mathrm{mg} / \mathrm{m} 3)$ or a combination of milled and fibrous calcium sulfate $(60 \mathrm{mg} / \mathrm{m} 3)$ for the same duration. Calcium levels in the lungs were similar to those of controls; however, gypsum fibers were detected in the lungs of treated animals. Significant increases in NSPH levels in BALF were observed in rats killed immediately after exposure at both doses and in recovery group animals at the higher dose. At $15 \mathrm{mg} / \mathrm{m} 3$, almost all NPSH was lost in macrophages from all treated animals (including those in recovery), but a significant decrease in extracellular g-GT activity was seen only in recovery group animals. Overall, the findings were "considered to be non-pathological local effects due to physical factors related to the shape of the gypsum fibers and not to calcium sulphate per se."
Intratracheal administration of man-made calcium sulfate fiber (2.0 mg) once per week for five weeks resulted in no deaths or significant body weight changes in female Syrian hamsters compared to controls.
Inflammation (specifically, chronic alveolitis with macrophage and neutrophil aggregation) was observed in the lung.
In guinea pigs, inhalation of calcined gypsum dust (1.6×104 particles $/ \mathrm{mL}$) for 44 hours per week in 5.5 days for two years, followed with or without a recovery period of up to 22 months, produced only minor effects in the lungs. There were 12 of 21 deaths over the entire experimental period. These were due to pneumonia or other pulmonary lesions; however, no significant gross signs of pulmonary disease or nodular or diffuse pneumoconiosis became significant. Beginning near 11 months, pigmentation and atelectasis were seen. During the recovery period, four of ten guinea pigs died; two died of pneumonia. Pigmentation continued in most animals but not atelectasis. Low-grade chronic inflammation, occurring in the first two months, also disappeared.
Mercury emissions controls on coal-fired power plants have increased the likelihood of the presence of mercury in synthetic gypsum formed in wet flue gas desulfurisation (FGD) systems and the finished wallboard produced from the FGD gypsum. In a study at a commercial wallboard plant, the raw FGD gypsum, the product stucco (beta form of $\mathrm{CaSO} \cdot 1 / 2 \mathrm{H} 2 \mathrm{O}$), and the finished dry wallboard each contained about $1 \mathrm{ug} \mathrm{Hg} / \mathrm{g}$ dry weight. Total mercury loss from the original FGD gypsum content was about $0.045 \mathrm{~g} \mathrm{Hg} /$ ton dry gypsum processed
Synergistic/Antagonistic Effects: In rats, i.t. administration of anhydrite ($5-35 \mathrm{mg}$) successively and simultaneously with quartz reduced the toxic effect of quartz in lung tissue. This protective effect on quartz toxicity was also seen in guinea pigs;calcined gypsum dust prevented or hindered the development of fibrosis. Natural anhydrite, however, increased the fibrogenic effect of cadmium sulfide in rats. Additionally, calcined gypsum dust had a stimulatory effect on experimental tuberculosis in guinea pigs.
Cytotoxicity: In Syrian hamster embryo cells, gypsum (up to $10 \mathrm{ug} / \mathrm{cm} 2$) did not induce apoptosis. Negative results were also found in mouse peritoneal macrophages (tested at $150 \mathrm{ug} / \mathrm{mL}$ gypsum dust) and in Chinese hamster lung V79-4 cells (tested up to $100 \mathrm{ug} / \mathrm{mL}$).
Carcinogenicity: In female Sprague-Dawley rats, i.p. injection of natural anhydrite dusts from German coal mines (doses not provided) induced granulomas; whether gypsum was the causal factor was not established. In Wistar rats, four i.p. injections of gypsum (25 mg each) induced abdominal cavity tumours, mostly sarcomatous mesothelioma, in 5% of animals; first tumour was seen at 546 days. In a subsequent experiment using the same procedure, female Wistar rats exhibited the first tumour at 579 days after the last injection. Mean survival of the tumour-bearing rats (5.7% of test group) was 583 days, while mean survival of the test group was 587 days. Tumour types seen were a sarcoma having cellular polymorphism, a carcinoma, and a reticulosarcoma.
Intratracheal administration of man-made calcium sulfate fiber $(2.0 \mathrm{mg})$ once per week for five weeks produced tumours in three of 20 female Syrian hamsters observed two years later. An anaplastic carcinoma was found in the heart, and one dark cell carcinoma was seen in the kidney. Two tumours of unspecified types were observed in the rib.
In guinea pigs, inhalation of gypsum (doses not provided) for 24 months produced no lung tumours.
In rats, i.t. administration of gypsum (doses not provided in abstract) from FGD for up to 18 months produced no arterial blood gas changes or indications of secondary heart damage as compared to controls.
In another study, a single i.t. dose (25 mg) of flue gas gypsum dust did not produce a pathological reaction when observed for up to 18 months. There were also no signs of developing granuloma of fibrosis of the lungs. Lead quickly accumulated in the femur after injection but was eliminated during the observation period. In the Ames test, the flue gas gypsum dust was negative.
Genotoxicity: Calcium sulfate (up to 2.5%) was negative in Salmonella typhimurium strains TA1535, TA1537, and TA1538 and in Saccharomyces cerevisiae strain D4 with and without metabolic activation.
Developmental toxicity: In pregnant mice, rats, and rabbits, daily oral administration of calcium sulfate (16-1600 mg/kg bw) beginning on gestation day 6 up to 18 produced no effects on maternal body weights, maternal or foetal survival, or nidation (embryo implantation); developmental effects were also not seen.

No significant acute toxicological data identified in literature search

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	\times	Carcinogenicity	x
Skin Irritation/Corrosion	\checkmark	Reproductivity	X
Serious Eye Damage/lrritation	\checkmark	STOT - Single Exposure	\checkmark
Respiratory or Skin sensitisation	\checkmark	STOT - Repeated Exposure	X
Mutagenicity	\times	Aspiration Hazard	\times

SECTION 12 Ecological information

	Endpoint	Test Duration (hr)	Species	Value	Source
Capitol Patch \& Ramp 20kg	Not Available	Not Available	Not Available	Not Available	Not Available

graded sand	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
calcium aluminate cement	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96h	Fish	>100mg/l	2
	NOEC(ECx)	72h	Algae or other aquatic plants	$2.6 \mathrm{mg} / \mathrm{l}$	2
	EC50	72h	Algae or other aquatic plants	$3.6 \mathrm{mg} / \mathrm{l}$	2
	EC50	48h	Crustacea	$5.4 \mathrm{mg} / \mathrm{l}$	2
portland cement	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
calcium carbonate	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	1h	Fish	$4-320 \mathrm{mg} / \mathrm{l}$	4
	EC50	72h	Algae or other aquatic plants	$>14 \mathrm{mg} / \mathrm{l}$	2
	LC50	96h	Fish	>165200mg/L	4
calcium sulfate	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	0.25h	Fish	$75 \mathrm{mg} / \mathrm{l}$	4
	EC50	72h	Algae or other aquatic plants	>79mg/l	2
	LC50	96h	Fish	>79mg/l	2

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways
Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
calcium sulfate	HIGH	HIGH

Bioaccumulative potential
Ingredient

Bioaccumulation
calcium sulfat
LOW (LogKOW = -2.2002)

Mobility in soil

Ingredient	Mobility
calcium sulfate	LOW $(K O C=6.124)$

SECTION 13 Disposal considerations

Waste treatment methods

	DO NOT allow wash water from cleaning or process equipment to enter drains. Product / Packaging disposal
	It may be necessary to collect all wash water for treatment before disposal. N In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority.

DO NOT allow wash water from cleaning or process equipment to enter drains.
In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
-Where in doubt contact the responsible authority.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Transport in bulk according to Annex II of MARPOL and the IBC code
Not Applicable
Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
graded sand	Not Available

Product name	Group
calcium aluminate cement	Not Available
portland cement	Not Available
calcium carbonate	Not Available
calcium sulfate	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
graded sand	Not Available
calcium aluminate cement	Not Available
portland cement	Not Available
calcium carbonate	Not Available
calcium sulfate	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

graded sand is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring
Australian Inventory of Industrial Chemicals (AIIC)
calcium aluminate cement is found on the following regulatory lists
Australian Inventory of Industrial Chemicals (AIIC)
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
portland cement is found on the following regulatory lists
Australian Inventory of Industrial Chemicals (AIIC)
calcium carbonate is found on the following regulatory lists
Australian Inventory of Industrial Chemicals (AIIC)
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

Chemical Footprint Project - Chemicals of High Concern List
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans
International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)
| calcium sulfate is found on the following regulatory lists
Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AlIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (graded sand; calcium aluminate cement; portland cement; calcium sulfate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (portland cement)
Korea - KECI	Yes
New Zealand - NZIoC	Yes (calcium aluminate cement; portland cement)
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yo (calcium aluminate cement)
Mexico - INSQ	No (calcium aluminate cement)
Vietnam - NCI	Yes = All CAS declared ingredients are on the inventory
Russia - FBEPH	No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.
Legend:	

SECTION 16 Other information

Revision Date	$24 / 08 / 2022$
Initial Date	$24 / 08 / 2022$

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average
PC-STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit。
IDLH: Immediately Dangerous to Life or Health Concentrations
ES: Exposure Standard
OSF: Odour Safety Factor
NOAEL : No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals
DSL: Domestic Substances List
NDSL: Non-Domestic Substances List
IECSC: Inventory of Existing Chemical Substance in China
EINECS: European INventory of Existing Commercial chemical Substances
ELINCS: European List of Notified Chemical Substances
NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory
NZloC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances
TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas
NCI : National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances
This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH
TEL (+61 3) 95724700.

[^0]: Label elements

